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Abstract-This paper presents an outline of an analytical method for calculating fully developed, 
longitudinal laminar flow in multiple connected regions as for instance in finite tube bundles. This 
method overcomes the limitation of previous investigations hitherto available and extends the analysis 
to problems of more than one rod ring. Results are given in form of velocity fields and the product 

h ke in dependence on pitch-to-diamctcr ratio, tube-wall spacing, radial displacement of a rod ring 
and the angle of the characteristic symmetry segment. 

NOMENCUATURE 

a, 
A”, B”, 
CA'). 

b, 
D, 
D,, 

Q F1 

p, 
r. 

R, 

Re, 

nondimensional radius of rods; 
unknown coefficients in the general solution 
of the Poisson’s equation; 
nondimensional radius of rings; 
nondimensional rod diameters (Fig. 4); 
hydraulicdiameter, Dh = 4* flow area/wetted 
perimeter; 
total friction factor; 
function, detined by equation (10); 
function, defined by equation (11); 
function, defined by equation (12); 
function, defined by equation (13); 
number of rings; 
number of peripheral rods, which are located 
on a ring; 
nondimensional pressure gradients, 

dP R2 

u, nondimensional axial velocity, u = u/6; 
u 0,nr periodic harmonic functions (real part of 

functions WJ’) ). .n 3 
zl, axial velocity; 
a, average axial velocity; 

wdf’. 1 analytic functions defined by equations (8) 
and (9); 

W, nondimensional wall spacing (Fig. 5); 

2, complex variable, z = r &’ ; 
Z, axial coordinate. 

Greek symbols 

nondimensional rod bundle pitch (Fig. 4); 
nondimensional radial coordinate referred 
to the center of the central rod; 
radius of the tube; 

Reynolds number, Re = @!!! ; 
P 

CL, angle of the rotation of the symmetry axes 
with respect to the .x-axis (Fig. 2); 

0, angular coordinates referred to the center of 
peripheral rods; 

K dynamic viscosity of the fluid; 

P, nondimensional radial coordinates referred 
to the center of the peripheral rods; 

PFI fluid density; 
7; average wall shear stress; 

% angular coordinate referred to the center of 
the central rod; 

‘p*. angle of the symmetry segments, q* = rr/m. 

Subscripts 

*Dedicated to Prof. h. Prof. Dr. SC. techn. Roman0 
Gregorig for his 65th birthday. 

TPresent address: University of Teheran, Department of 
Chemical Engineering, Iran. 

IPresent address: MIT, Department of Nuclear Engineer- 
ing, Cambridge, Ma. 02142. U.S.A. 

K rod ring; 

1, rod ring; peripheral rods; 
I, n, p, s, summation indices, integers; 

P? particular; 

r, regular ; 
s, singular ; 

Z. central rod. 

1121 
HMT Vol. 1:. No. 10~ A 



II’? R. MO~TAGHIAN and L. WOLF 

1. INTRODUCTION 

THE MOST frequent type of fuel arrangement used in 
nuclear power reactors is a bundle of fuel rods located 
inside a round or hexagonal tube in which the cooling 
medium flows in-line. In most of these bundles the 

rods are in a regular array of square or triangular pitch. 
It was only with the start-up of the application of 
nuclear energy that a detailed knowledge of the hydro- 
dynamics and energy transfer in these geometries 
became more and more important, although tube 
bundle heat exchangers have long been in use. 

Therefore, it is not surprising to note that most of 
the previous and today’s work is done with special 
emphasis to the nuclear field. In the first beginning, 
the laminar flow field in an infinite bundle which 

consists of a regularly repeated array was given by 
Sparrow et al. [l] and was reexamined later on by 

Subbotin et al. [2] with different mathematical tools. 
Axford [3] and Dwyer and Berry [4] resolved the 
problem in conjunction with the solution of the heat- 

transfer problems. Leonard and Lemlich [5] presented 
the solution for the extreme case of touching rods. Due 
to the inherent symmetry of the rod arrangement only 
a small characteristic flow field region needed to be 

analyzed. The domain under consideration is bounded 
partially by lines which do not coincide with surfaces 

of an orthogonal coordinate system. Hence, the bound- 
ary conditions on these lines has to be satisfied point- 
wise by means of a boundary collocation technique. 

However, this procedure is accompanied by handling 
large systems of algebraic equations and in view of 

the limited computer storage at this time the analyses 
were restricted to small flow regions. Therefore, the 
only attempt to study the additional wall effect was 
given by Schmid [6] who analyzed the variation of the 

volumetric flow rate in a semi-infinite square bundle, 
which was bounded by one plane wall. 

At the same period, analytical methods as for in- 
stance the periodically harmonic Howland functions 
[7] came to light again in conjunction with the solution 
of problems in finite tube bundles in which the rods 
are concentrically arranged on a ring around a central 
rod. This geometry allows to study extensively the 
influence of the tube wall on the flow field for the first 
time. Axford [IS] used the algorithm given by Howland 
and proposed a method of solution but did not give 
any results. The advantage of this method lies in the 
fact that the boundary condition can be continuously 
satisfied. Therefore, Chen [9] used the same method 
later on in his extension to eccentrically shifted rod 
arrangement within the tube wall. In addition, he solved 
the heat-transfer problem, too. On the other hand, 
Min [lo, 111 made use of a mapping function, trans- 
formed the complex potential and satisfied pointwise 

the boundary conditions on the peripheral rods. He 

reported a great amount of results. 
Although the above mentioned analyses give some 

inside into the hydrodynamics and energy transfer in 
finite tube bundles they are oflimited practical applica- 

tion because they are all restricted to bundles with only 
one ring of rods around a central rod. Additionally. 
these studies did not meet the requirements of the 

current fuel element bundle design in the nuclear 
industry, due to the curved tube wall and the circular 
arrangement of the rods. In view of the fact. that most 
of the variations in momentum and energy transport 
occur nearby the tube wall and in the domain of 

intersecting plane tube walls, i.e. in the corner region, 
the main interest nowadays concentrates on analyzing 

the side and corner subcells. The first step in this 

direction was made by Gunn and Darling [12] who 
used an overall numerical method to calculate velocity 

fields and pressure drops in the characteristic suh- 
channels of a finite 4-rod bundle in a square array. 

Rehme [ 13,141 took the same approach for the solution 
of a 7-rod bundle in a triangular array. However. he 
quoted [14] that a finite difference solution for bundles 
with more than seven rods results in an enormous 

consumption in computer storage and time. Therefore. 
he proposed a subchannel analysis based on the super- 

position of the local subcell solutions. He compared his 
values for the product of ,ft. Re with values given by 
Gunnand Darling [12] and with the only experimental 
data, hitherto available, presented by Galloway and 

Epstein [15] for 16-rod bundles in a square array and 
19-rod bundles in a triangular array for different wall 
spacings. Rehme’s data resulting from local calculations 
are in good agreement with those reported in [12]. 

However, the comparison with the 16- and 19-rod 
bundle data is not correct, because he compared the 
wrong data with respect to the wall spacing. A careful 
inspection of the data shows at least a difference of 
10 per cent which is in contrast to Rehme’s conclusion. 

This shows clearly the uncertainty in using subchannel 
analyses. 

To overcome the difficulties in analyzing for more 
than 7-rod bundles and to extend the limitations of 
studying only one ring problems, Mottaghian and Wolf 
[ 161 proposed an analytical method which enables one 
to prove the validity of the subchannel codes based on 
a lumped parameter description of the transport pro- 
cesses in the rod bundles. 

2. FORMULATION OF THE PROBLEM 

Whereas all previous investigations are limited to 
one ring problems, this analysis considers a tube bundle 
consisting of an arbitrary number of rods with different 
radii at(l = 1,2,. , L*) placed on concentric rings of 
radii br around a central rod with the radius (I~. The 
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only limitation of this analysis is the assumption that 

the bundle has a characteristic symmetry with respect 
to the angular direction. This segment is shown in 

Fig. 1 together with all geometrical, nondimensional 

variables. The (r, cp)-polar-coordinate systems refers to 
the center of the central rod, whereas the (blp,, H&polar- 
coordinate systems are associated with the centers of 
the individual peripheral rods. 

FIG. 1. Symmetry segment of a finite rod bundle. 

The flow field is described generally by the equation 
of continuity and the equation of motion which under 
the assumptions of (1) steady state; (2) fully-developed, 
isothermal incompressible Newtonian laminar flow and 

(3) pressure as the only force acting on the fluid 
reduce to 

V2u = QF. (1) 

The boundary conditions which has to be satisfied are: 
zero velocity at every surface in the bundle 

U = 0; (2) 

the derivative of the velocity field with respect to the 

azimuthal coordinate must be zero along every axis of 
symmetry 

s jl.4 
-=o. 
a(P 

3. METHOD OF SOLUTION 

Although the equation (1) which is of the Poisson 
type, is simple in nature, the solution of the problem 
is complex in view of satisfying simultaneously all 
boundary conditions, equation (2), at the surfaces. The 
only way to do this economically seems to be the 
method of superposition of solutions. Basically the 
overall solution is split into three major parts 

u = Q&,+u~+u,). (4) 

The first part is the wellknown particular solution of 

the Poisson equation 

up = &r2, (5) 

whereas the second part constitutes the regular solution 
and follows to be with respect to the symmetry con- 
dition, equation (3), 

u, = A, + BO In r + 2 Anrnm cos(nmcp) 

+ f B,r-“m~~~(nrn(p). (6) 
n=l 

This solution represents the flow field in the annulus 
alone if the central rod is present. If there is no central 
rod then with B. = B, = 0, equation (6) constitutes the 
solution for a tube alone. 

The third part in equation (4) is the singular solution 

and represents the influence of the rods in the rings on 
the whole flow field. For u, the following double serie 

is set up 

L’ m 

in which the first summation represents the number 
of rod rings. The extension to a double sum as shown 
in equation (7) is the basic principle underlying the 
following analysis. The periodic and harmonic func- 
tions I$) represent the real part of the analytic functions 

m-l 

W&z) = -In n (z-zpl) 
p=o 

and 

= -ln(Y-z;,) (Sa) 

bl 

@“(‘)=(n-l)! db; , ,.... 

(9) d”Wd”(z) ,I I ;; ;, ,L* 

The midpoints of the rods zpl can be formulated as 

follows 

zpl = b,exp[i(2Pt+a,]] (see Fig. 2). 

The functions W;‘)(z) have logarithmic singularities in 
the origins of the rods and the functions W,(‘)(z) have 

poles of order n at z = zpl. 
In view of satisfying the non-slip condition on the 

surface of the central rod and additionally on the 
channel wall, the overall solution has to be represented 
in the (r, q)-coordinate system. Both, the particular and 
regular solutions are in the right form as can be seen 
by inspection of the equations (5) and (6). whereas the 
singular solution has to be transformed. To do this 
the analytic functions W$‘) and Win must be developed 
into infinite series in terms of z. In view of the above 
mentioned singularities the development into series 
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ring of rods, i.e. 

FIG. 2. Rotation of the symmetry axis with 
respect to the x-axis. 

must be done for two domains, i.e. 1 z/ < ) zplj and 

I 2 I > I Zpl I 
After the separation of the real and imaginary parts 

of the functions Wdr) and Wn(r) the following results 
hold for the functions UiO in the different regions 

U,“‘Z (-l)“m 

{ 
l+ ; (mmi:;l) 

S=l 0 

f mscos[ms(~-XJ] 
I I 

= gw, $9) n=l.2..... (11) 

r>b,, 

= h$)(r, q) w-9 

U,c’) = m f ms (yq) 
S=l 0 ; cos[ms(cp-al)] = @)(r, cp) 

n = 1,2,. . (13) 

Introducing these equations into equation (7) results 

in the following forms of the singular solution, depend- 
ing upon the different regions in the tube bundle: 

For the region in between the first ring of rods, i.e. 

O,<r<b, 

For the whole region between the first and the L*-th 

K = 1,2 ,..., L*-1. (15) 
For the region in between the last ring of rods and 

the tube wall 

hL* < r < 1, 

u, = g 
c 

CS’I?#‘$ t C~‘V$’ 
1 

(16) 
,=1 “=I 

After these transformations of the singular solution, 
the general solution now satisfies the differential 

equation (1) as well as the boundary conditions, 
equations (2) and (3) at the central rod surface and 
the tube wall, continuously. With the solution in this 

form it is generally possible to satisfy the boundary 
condition at any arbitrary surface in the domain 
between the central rod and the tube wall with the help 
of the point-matching technique or the boundary least 
square-method. However, in view of the resulting errors 
ofthe calculations with these methods on the boundary 

surfaces it is more advantageous in case of circular 
regions to perform an additional transformation to 

satisfy simultaneously the boundary conditions on the 
peripheral rods, too. For this reason, the general 
solution has to be transformed term by term from the 

(r, rp)-polar coordinate system into the (brpr, Or) polar 
coordinate systems of the individual peripheral rods. 

After these manipulations the solution is complete. 
Setting this solution into the boundary condition (2) 

results in an infinite system of coupled, inhomogeneous 
linear equations for the unknown coefficients in the 
regular as well as singular solutions. To solve this 
system it is advantageous to use on the one hand the 
orthogonality relations of trigonometric functions and 
on the other hand to reduce the system to one type 
of coefficient. 

4. RESULTS AND DISCUSSION 

The effect of the rod arrangement, number of rods, 
rod spacings, tube wall spacings, radial rod displace- 
ments and rod diameters on the velocity field, local 
wall shear stress distributions, pressure gradients and 
total friction factors has been investigated. 

In order to check the validity of the analysis and 
the computer program a special 7-rod bundle problem 
with two rings of three rods has been constituted. In 
the limiting case for bz approaching bl, this problem 
becomes consistent with the one ring 7-tube problem 
of previous investigations and the results show a very 
close agreement with those reported in [9,11]. 
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b-4 

FIG. 3. Structure of isovels for laminar flow in finite rod bundles with 19 rods 
in triangular rod array. br = 0.4; b2 = 0,693; b, = 0.8; (a) a, = a, = a2 = a3 = 0.05; 

(b) a, = a, = u2 = aJ = 0.10. 

For computational purposes, the aforementioned 
infinite system has to be truncated after N terms. The 
number of equations, i.e. number of coeflkients, neces- 
sary to produce satisfactory convergence, primarily 
depends on the distances between two neighbouring 
rod rings. For the cases shown in the following figures 
the non-slip condition at the central rod and tube wall 
is satisfied within the order of lo-l5 whereas for the 
peripheral rods the value increases to 10e6 which 
nevertheless seems to be a reasonable value, too. 

Figure 3 shows the contours of constant velocity 
lines in 19-rod bundles with triangular rod arrange- 
ments for two different rod diameters. By comparison 
of the upper and lower part of Fig. 3 it is obvious 
that with increasing rod diameter the effect of the 
peripheral rods becomes greater on the flow around 
the central rod as well as on the flow around and 
between adjacent rods. The same holds for the flow 
pattern in the region between the outer rod ring and 

the tube wall. Increasing the rod diameter results in 
a reduction of the how area, and hence, for a fixed 
flow rate the focal velocities in Fig. 3(b) are higher than 
those in Fig. 3(a). 

The total friction factor ft is defined as 

PFT 

whereas the average shear stress is given by 

dp & z= __A+ 
dz 4 

In the following figures the product 

f,.~e = -$Q& 

is used to describe the pressure drop behavior in 
dependence of the aforementioned parameters. 

In Fig. 4 ft. Re is plotted vs the P/D ratio for 19-rod 
bundles arranged in a t~angular array as shown by 
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FIG. 4. Total friction factor times Reynolds num- 
ber (J.Re) in dependence on pitch-to-diameter 
ratio (P/D) for 19-rod bundles in triangular array. 
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Frc. 5. Total friction factor times Reynolds num- 
ber (,I;. Re) as a function of the wall spacing (IV). 

the sketch. As a result ft. Re continuously increases 

with increasing P/D ratio. 
As indicated in Fig. 5 the product .f;. Re increases 

with increasing wall spacing, reaches a maximum 
nearby W = 0.35 and then decreases continuously. The 
location of the maximum depends on the rod arrange- 
ment as well as on the rod diameter. The main result 
of this figure is that there exists a special location of 
the two rod rings in the region between the central 
rod and the tube wall for which the perturbation in 
the flow pattern is greatest in view of an overall pressure 
gradient. 

03 
46 37 28 19 IO 

Equiv. number of rods 

The effect of varying the radius of the second rod 
ring b2 for the fixed positions of the first and third 

FIG. 7. Total friction factor times Reynolds number 
(5. Re) in dependence on the angle of the symmetry 

rod rings on J;.Rr is shown in Fig. 6. For a fixed segment (cp*). 

flow rate ,f,. Re increases with increasing ring radius 
h2, reaches a maximum value at h2 = 0.63 and then 
decreases monotonically with further increase of ha. 
Therefore, in order to minimize j;. Rr it seems to be 

more advantageous to put the additional rod into the 
first or third rod ring than to constitute a second 

rod ring. 

o-4 0.5 0.7 C 

b, 

FIG. 6. Total friction factor times Reynolds num- 
ber (f;.Re) as a function of the radial displace- 
ments of the second rod ring with the radius (h,). 

8 

30- 
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In Fig. 7 f,.Re is plotted vs the angle of the 

symmetry segment. Decreasing this angle results in an 
increase of the total number of rods in the bundle. 

The rod diameter is chosen as an additional parameter. 
The curves show the existence of a maximum which 
decreases with increasing rod diameter and shifts 

slightly to greater angles. It is interesting to note that 
in the range of geometrical parameters considered here, 
the maxima occur in bundles with relative few rods. 

5. CONCLUSION 

The developed analytical method of solution con- 
stitutes the basis on which solution of the thermal 

problem is now possible for finite tube bundles with 
more than one rod ring. This additional effort seems 
to be necessary in view of a thermal-fluid dynamic 
optimization of such bundles. Additionally, such results 
may serve as input data and/or for proving the 
results of lumped parameter codes in view of the 

transport coefficients for the limiting case of laminar 
flow. As to the authors knowledge, the method of 
solution has some special features in reducing computer 

storage and computer time due to its analytical 
character. 
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UNE ANALYSE BIDIMENSIONNELLE DE L’ECOULEMENT LAMINAIRE D’UN FLUIDE 
DANS UNE GRAPPE DE BARRES AVEC UN ARRANGEMENT ARBITRAIRE 

R&sum&-On prCsente l’essentiel d’une methode analytique de calcul d’un kcoulement laminaire, 
longitudinal, pleinement d&velopp& dans des rkgions connect&es de faGon multiple comme, par exemple, 
dans des grappes de tubes. Cette mCthode surmonte les limitations des etudes antbrieures et &tend 
l’analyse aux probltmes de plus d’un espace annulaire. Les rksultats sont donnts sous la forme du champ 
de vitesse et du produit fr. Re en fonction du rapport pas/diamhtre, de l’espacement des parois des tubes, 

du d&placement radial d’une barre et de l’angle du segment caractkristique de symCtrie. 

EINE ZWEIDIMENSIONALE ANALYSE DER LAMINARSTROMUNG 
IN RUNDSTABBtjNDELN BELIEBIGER ANORDNUNG 

Zusammenfassung-Es wird eine Methode vorgestellt, die es erstmals ermiiglicht, ausgebildete Laminar- 
striimung in endlichen Rundstabbiindeln mit mehr als einem Ring von Stlben analytisch zu berechnen. 
Es werden zweidimensionale Geschwindigkeitsfelder und das Produkt fr. Re als Funktion des 
Stababstand-Stabdurchmesser-Verhatnisses, des Biindel-Wand-Abstands, der radialen Verschiebung der 

Stabringe untereinander sowie des Symmteriewinkels des charakteristischen Segmentes dargestellt. 
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jJBYMEPHbIR AHAJIM3 JIAMBHAPHOI-0 TEYEHki?II 2WAKOCTM B nYqKAX 
CTEPlKHEfi l-IPki IIPOPi3BOJIbHOM PACIIOJIO~EHHM 

hHOTBI(HR - B AaHHOfi CTaTbe OIIUCbIBaeTCIi ZlHUIHTWIeCKZit MeTOA PaCYtTa IIOJIHOCTbHJ pa3BHTOrO 

AaMHHapHOrO IIpOAOJIbHOrO TWCHAR B HeCKOJIbKHX pa3JlA’iHbIM o6pa3oM COeAHHeHHbIX IIyYKaX Tpy6, 

CB060JIHblii OT Ol-PaHH'leHdi, UPMHSITbIX B lTpeAbIAyLL(HX IICCJIeAOBaHHRX. Pe3J’JlbTaTbI npCACTaBJreHb1 

B BBA’Z AByXMepHOrO IlOJIR CKOpOCTCfi li npOH3BeAeHEf~f,. Re B 3BBHCHMOCTR OT OTHOUleHAR AHi+ 

MeTpa K AJIkiHe, pZCTORHPi5I MeX(Ay CTep~HRMEi, PaAFiZlJIbHOrO CMCI&HWl IIy’IKOB OTHOCllTeiTbHO 

apyr npyra u yrna cmfhterpm xapamepacnisecKor0 cemema. 


